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MRI‑based clinical‑radiomics 
model predicts tumor response 
before treatment in locally 
advanced rectal cancer
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Martina d’Annibale1, Pierpaolo Croce1, Consuelo Rosa2, Domenico Mastrodicasa3, 
Stefano Trebeschi4, Doenja Marina Johanna Lambregts4, Daniele Caposiena5, 
Francesco Lorenzo Serafini1, Raffaella Basilico1, Giulio Cocco6, Pierluigi Di Sebastiano7, 
Sebastiano Cinalli8, Antonio Ferretti1, Richard Geoffrey Wise1, Domenico Genovesi2, 
Regina G. H. Beets‑Tan4,9,10 & Massimo Caulo1

Neoadjuvant chemo‑radiotherapy (CRT) followed by total mesorectal excision (TME) represents 
the standard treatment for patients with locally advanced (≥ T3 or N+) rectal cancer (LARC). 
Approximately 15% of patients with LARC shows a complete response after CRT. The use of pre‑
treatment MRI as predictive biomarker could help to increase the chance of organ preservation by 
tailoring the neoadjuvant treatment. We present a novel machine learning model combining pre‑
treatment MRI‑based clinical and radiomic features for the early prediction of treatment response in 
LARC patients. MRI scans (3.0 T, T2‑weighted) of 72 patients with LARC were included. Two readers 
independently segmented each tumor. Radiomic features were extracted from both the “tumor core” 
(TC) and the “tumor border” (TB). Partial least square (PLS) regression was used as the multivariate, 
machine learning, algorithm of choice and leave‑one‑out nested cross‑validation was used to optimize 
hyperparameters of the PLS. The MRI‑Based “clinical‑radiomic” machine learning model properly 
predicted the treatment response (AUC = 0.793, p = 5.6 ×  10–5). Importantly, the prediction improved 
when combining MRI‑based clinical features and radiomic features, the latter extracted from both TC 
and TB. Prospective validation studies in randomized clinical trials are warranted to better define the 
role of radiomics in the development of rectal cancer precision medicine.

In recent years, neoadjuvant chemo-radiotherapy (CRT) followed by total mesorectal excision (TME) became 
the standard treatment for patients with locally advanced (≥ T3 or N+) rectal cancer (LARC)1,2. This approach 
increased the chance of a significant downstaging and reduced the risk of  recurrence3–6. In this context, Mag-
netic Resonance Imaging (MRI), thanks to its diagnostic and prognostic relevance, is the gold standard imaging 
approach for local staging and treatment response  assessment7. At staging, MRI provides information on the 
site, the extension and the relation with surrounding organs, thus establishing landmarks for following treat-
ment. Moreover, it reveals prognostic signs such as the mesorectal fascia involvement, the extramural vascular 
invasion and the distance to the anal sphincter  complex8. During the treatment and, mostly, at the end of the 
CRT right before surgery, MRI plays a crucial role for the response  assessment9–15. In fact, approximately 15% 
of patients with LARC shows a complete response to CRT (complete responders) and it has been suggested that 
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surgery could be omitted in selected  patients3. Moreover, an international multicenter registry study on watch 
and wait (W&W) strategy revealed a 5-year disease specific survival of 94%16,17. In this context, the use of MR 
as predictive biomarker in oncology quickly became a hot topic in literature, with the primary aim to select the 
most appropriate treatment thus pursuing precision  medicine18. Moreover, the development of organ preservation 
policies further encouraged the researchers to investigate new MRI-based biomarkers for treatment  response3. 
This approach could be extremely beneficial for patients considered good responder, since the neoadjuvant 
treatment could be intensified to increase the chance of organ preservation. Moreover, for these patients, a 
longer interval between CRT and surgery (from 8 to 11 weeks) may increase the pathological complete response 
rates as well. On the other hand, in poor responders, the treatment could be tailored with an additional  boost19. 
Methods extracting mineable data from clinical images, such as those based on automatic extraction of features 
from radiological images (radiomic features) and machine learning approaches, revealed promising results 
when combined to visual morphologic and clinical  assessment20–28. Moreover, in other tumor types, prognostic 
information has been obtained not only from the tumor but also in the tumor surrounding tissue (TST)29–31. We 
hypothesized that a combination of MRI-based data, including clinical and computational ones, could be useful 
for treatment response prediction at an early stage.

We here present a novel machine learning model combining MRI-based clinical and radiomic features, the 
latter extracted from both the “tumor core” (TC) and the “tumor border” (TB) from baseline T2-weighted (T2w) 
images, for the early prediction of treatment response in patients with LARC.

Methods
Subjects. The study received formal approval from the Ethical Committee of the University G. D’Annunzio 
of Chieti-Pescara, Italy; informed consent was waived by the same ethics committee that approved the study 
(Comitato Etico per la Ricerca Biomedica delle Province di Chieti e Pescara e dell’Università degli Studi 
“G.d’Annunzio” di Chieti e Pescara). The study was conducted according to ethical principles laid down by 
the latest version of the Declaration of Helsinki. A total of 164 patients who underwent clinically indicated 
rectal MRI for primary staging between January 2011 and February 2019 at our institution were retrospectively 
included (Fig. 1). Inclusion criteria were 1) non-mucinous locally advanced rectal cancer confirmed via biopsy, 
2) MRI performed using a 3.0 T scanner, 3) availability of final clinical outcome (major pathological response or 
non-major pathological response), 4) long-course CRT. Ninety-two patients were excluded: 12 were mucinous 
cancers, 24 because the MRI exam was performed on a 1.5 T scanner, 33 were transferred in other institutes and 
we had no information regarding the final clinical outcome. Moreover, 18 patients were considered unfit for 
long-course CRT because of their clinical fragility and 5 patients had severe susceptibility artifacts in the pelvis 
(hip replacement). The final study population was composed of 72 patients.

Chemoradiotherapy. Radiotherapy was performed by 3D conformal technique, with a total dose of 45 Gy 
(1.8 Gy/day) to the pelvic nodes, followed by a sequential boost of 5.4 Gy (1.8 Gy/day; total dose 50.40 Gy), or 
a concomitant boost of 10 Gy (1 Gy/day for 2 times/week; total dose 55 Gy) initially with a 3D-CRT technique 
and then with simultaneous integrated boost with intensity-modulated radiotherapy (2.2  Gy/day, total dose 

Figure 1.  Study flowchart.
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55 Gy). Different schedules of drugs including 5-Fluorouracil and leucovorin or capecitabine were administered 
as concomitant chemotherapy.

MRI protocol. All patients in this cohort underwent clinically indicated rectal MRI consisting of a standard 
T2w and a diffusion weighted imaging (DWI) acquisition performed using a state-of-the-art 3 T MR scanner 
(Achieva, Philips Medical System, Best, the Netherlands) equipped with a phased array surface coil. Both T2w 
and DWI sequences were axially oriented perpendicular to the tumor major axis defined on a sagittal scan. 
Patients without contraindications received 20 mg of scopolamine butylbromide (Buscopan, Boehringer Ingel-
heim, Ingelheim am Rhein, Germany) intravenously to reduce bowel  motility7. Detailed information regarding 
the parameters of the MRI protocol are described in Table 1.

Imaging analysis. Whole-volume tumor manual segmentation representing the tumor core (TC) was per-
formed on T2w images for each patient by two independent readers with different degrees of experience in 
abdominal radiology (a radiologist with 5 years of expertise in rectal MRI and a senior resident). All the segmen-
tations were performed on T2w images of the staging MRI and were used as masks for following analysis. The 
software used for the segmentation was an open-source medical image computing platform, 3DSlicer Version 
4.8 (www.3dsli cer.org). To create the “border” segmentations (tumor border, TB), a “3dmask_tool” (AFNI) was 
 used32. Firstly, both a 2 mm dilatation (“dilate”) and a 2 mm erosion (“erode”) were obtained from the TC of each 
patient. Secondly, the two masks were subtracted (“dilate”–“erode”) in order to obtain the TB which was 4 mm 
thick (Fig. 2). All the “border” masks were then checked by the two readers. If necessary, the segmentation was 
manually corrected in order to include only the outer border of the tumor and adjacent perivisceral fat. TC and 
TB were shown in Fig. 3a,b.

Table 1.  MRI protocol parameters. *MRI parameters are referred to axial T2-weighted images.

T2-weighted
Turbo spin echo*

Repetition time (msec) 3000–5000

Echo time (msec) 80

Section thickness (mm) 3

Section gap (mm) 0

Acquisition Matrix Size 188 × 167

No. of signals acquired 2

Field of view (mm) 150 × 150

Sensitivity Encoding (SENSE) Yes

Acquisition Time (min) 2.39

No. of sections 30

Figure 2.  The segmentation process was as follows: in the first step, the whole tumor was manually segmented 
on axial T2w images and labeled as tumor core (TC). In the second step, the edge of TC was dilated (“dilate”) 
and eroded (“erode”) by 2 mm, respectively. In the final step, we overlapped the dilated and eroded masks, 
and subsequently subtracted them to obtain the tumor border (TB). Thus, the TB obtained included the most 
peripheral portion of the TC and the surrounding tissues.

http://www.3dslicer.org
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Clinical features. Four weeks after the end of the manual segmentation, the two readers in consensus evalu-
ated, for each patient, nine MRI-based clinical features, namely, tumor location (high = 1, middle = 2, low rec-
tum = 3), whole tumor volume  (mm3), cranio-caudal extension (mm), distance from the internal anal sphincter 
(mm), mesorectal fascia infiltration (absent = 0, present = 1), extramural vascular invasion (absent = 0, pre-
sent = 1), extramural depth of invasion (mm), T-stage (1–4) and N-stage (1–2). These MRI-based features were 
defined “clinical features” and were used in the machine learning model.

Radiomic features extraction. The extraction of the radiomic features from the masked (TB and TC) 
T2w images was performed using PyRadiomics, a flexible open-source platform capable of extracting a large 
panel of engineered features from medical images; this radiomic quantification platform enables the standardiza-
tion of both feature definitions and image  processing33. The reproducibility assessment of the features extracted 
by the two readers from the segmentations of all patients was performed. To avoid data heterogeneity bias and to 
promote reproducibility, the T2w images and masks were resampled using 3 isotropic voxel dimensions (1 × 1 × 1 
mm, 2 × 2 × 2 mm, 5 × 5 × 5 mm). For each segmentation and for each image resolution (1 mm, 2 mm and 5 mm) 
ten built-in filters (Original, wavelet, Laplacian of Gaussian (LoG), square, square root, logarithm, exponential, 
Gradient, LBP2D, LBP3D) were applied and seven feature classes (first order statistics, shape descriptors, glcm, 
glrlm, ngtdm, gldm, glszm) were calculated, which resulted in a total of 1688 radiomic features (Fig. 3c).

Ethical statement. This study was approved by the local ethics committee. The study used only pre-exist-
ing medical data, therefore patient consent was waived.

Machine learning: partial least square (PLS) regression
Machine learning approaches (also defined multivariate approaches) exploits data multidimensionality to extract 
useful information. The added value of such approaches is that they identify statistical dependences among vari-
ables that are not visible to standard univariate analysis.

However, many radiomic features tend to identify similar image characteristics, generally providing highly 
redundant  information34. This means that, when trying to predict an output based on these features, this informa-
tion redundancy, coupled with the large numerosity of features with respect to samples (e.g. subjects), corrupts 
the results making the prediction unstable to noise and prone to overfitting and poor  generalization35. To address 
this problem, in this work, two main approaches were implemented. The first approach to dampen this effect was 
to reduce the number of used features by selecting only those that were highly repeatable between the two masks 
(delineated by the two radiologists) used (r > 0.95). The second approach was to implement a machine learning 
framework based on a linear regression analysis that employed a space dimension reduction procedure, namely 
the partial least square (PLS)  regression36,37. The PLS was used to predict the treatment response in patients 
with LARC at an early stage from the set of clinical and radiomic features. PLS has been extensively proven to 

Figure 3.  (a) Tumor core and (b) tumor border on baseline T2-weighted images. (c) Schematic representation 
of the radiomic features extraction process and (d) the machine learning approach.
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be highly effective in reducing overfitting in the presence of collinearity. The underlying assumption of PLS is 
that the observed data is generated by a system or process which is driven by a small number of latent variables.

PLS allows the construction of regression equations reducing the predictors to a smaller set of uncor-
related components, i.e. a linear combination of the original predictors, and performs regression on these 
 components36,38. The goal of PLS is to identify components that capture most of the information in the inde-
pendent variables (e.g. linear combinations of all radiomic features) that is useful for predicting the dependent 
variable (e.g. treatment response), while reducing the dimensionality of the regression problem by using fewer 
components than the original number of independent variables. PLS can be conceived as a supervised learn-
ing version of the Principal Component Analysis (PCA)39,40. Of note, the learning process (fitting) of the PLS 
algorithm provides regression loadings that can be used to retrieve the weights (β-weights) linking the original 
independent variables with the dependent variable, depicting the importance and sign of the original variables 
in the prediction process. The PLS has one hyperparameter to be optimized, namely the number of uncorrelated 
components (linear combinations of the original independent variables) to be used in the regression.

In order to perform hyperparameter optimization and evaluate the generalizable performance of the proce-
dure three sets are required, a trained set, where the model is trained as a function of different hyperparameter 
values, a validation set, where the best hyperparameter is chosen, and a test set, where the final model is tested. 
However, when the number of samples is small, this separation of data can greatly reduce the training sample, 
impairing appropriate fitting of the data-driven model.

An extension of this approach that allows to minimize the effect of the loss of samples in the different sets 
is the nested cross-validation (nCV)41–43. In nCV, data are divided in folds and the model is trained on all data 
except one-fold in an iterative, nested manner. Whereas the outer loop estimates the performances of the model 
among iterations (test), the inner loop evaluates the optimal hyperparameter (validation). If the number of 
folds equals the number of samples (one-fold per sample) the procedure is defined leave-one-out  nCV44,45. This 
approach is highly suited for medical applications where each sample represents one subject. In this work, a 
leave-one-out nCV was implemented to optimize the PLS number of components and to assess the PLS gener-
alization performance.

The leave-one-out nCV PLS analysis was repeated multiple times considering standalone clinical features, 
standalone radiomic features (with an inter-radiologist repeatability of r > 0.95) and combined clinical and radi-
omic features. MRI-based clinical and radiomic features were also analyzed multiple times considering TC only, 
TB only, as well as both TC and TB radiomic features (Fig. 3d). The machine learning analyses were implemented 
in Matlab.

Reference standard. The major pathologic response, assessed for 69 patients on surgical specimens, 
was considered to be Tumor Regression Grade (TRG) 1 or 2 scores according to Mandard’s  classification46–48. 
Alternatively, for 3 patients, a sustained complete clinical response with repeated negative MRI examinations 
and endoscopy with or without biopsy was considered surrogate for a major pathological response for patients 
enrolled in watch-and-wait  protocols49. More in detail, a sustained complete response was defined as a long-term 
recurrence-free clinical follow-up (minimum follow-up period of 1 year)50.

Statistical analysis. The classification performances were assessed through Receiver Operating Character-
istic (ROC) analyses considering the inferred (out-of-training-sample) treatment response to therapy. Patients 
who responded to therapy (major pathological response) were attributed to the “negative” group, whereas patient 
showing a non-major pathological response were attributed to the “positive” group. The ROC analyses were also 
performed on random shuffled outcomes to simulate the null hypothesis and evaluate its confidence interval 
(repeated  106 times). The ROC analysis delivered an Area Under the Curve (AUC) which, using the random 
shuffled outcomes, could be transformed into a z-score for assessing its statistical significance. The Statistical 
Analysis was performed in Matlab.

Results
Out of the 72 patients included in the study, 48 were male (67%), and the mean age was 65 (IQR: 57.5–73.8) 
years. 48 (67%) patients showed a major pathological response and 24 (33%) a non-major pathological response 
(Table 2).

Nine clinical features were available and all of them were considered in the machine learning analysis. Moreo-
ver, 1688 radiomic features were extracted for the three image resolutions employed (1 mm, 2 mm and 5 mm) and 
for TC and TB, leading to a total of 10,128 (1688 × 3 × 2) features. 1405 of these features showed an inter-reader 
correlation of r > 0.95 and were used for further analysis.

When considering the 9 standalone clinical features an AUC = 0.684 was obtained (z = 2.53, p = 11 ×  10−3, 
Fig.  4a).  When employing standalone radiomic features with an r > 0.95, i.e. 1405 radiomic fea-
tures, an AUC = 0.700 was obtained (z = 2.75, p = 5.9 ×  10−3, Fig. 4b). Importantly, the highest AUC was obtained 
when combining the 9 clinical features with the 1405 radiomic features, obtaining an AUC = 0.793 (z = 4.00, 
p = 5.6 ×  10−5, Fig. 4c).

The weights of the PLS (β-weights), when the machinery was trained on both clinical and radiomic fea-
tures, are shown in Fig. 5. Figure 5a reports the distributions of the β-weights for radiomic and clinical features, 
whereas Fig. 5b depicts the β-weights associated to the top 1% of features with the largest β-weights in magni-
tude, i.e. those most impacting the prediction. Importantly, for all except one (tumor location), of the top 1% of 
features, the weights were positive, that considering the value of “0” attributed to patients with major pathologic 
response and the value of “1” to the others during the multivariate regression, depicted a worse response to 
treatment with increasing feature value. Of note, the only important feature with negative weight was tumor 
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location that, considering the labelling value attributed as a function of location (1 = High, 2 = Middle, 3 = Low), 
delineated a better response to treatment for tumors in the low rectum. Finally, the impact of TC and TB on 
the results was assessed. When using the 9 clinical features and 790 radiomic features (with an inter-radiolo-
gist repeatability of r > 0.95) extracted only from the TC, an AUC = 0.689 was obtained (z = 2.60, p = 9.3 ×  10−3, 
Fig. 6a). When using the 9 clinical features and 626 radiomic features (with an inter-radiologist repeatability of 
r > 0.95) extracted only from the TB, an AUC = 0.541 was obtained (z = 0.56, p = 0.57, Fig. 6b). Indeed, a highly 
synergistic effects was obtained when combining TB and TC features, replicating the results previously found 
with an AUC = 0.793 (z = 4.00, p = 5.6 ×  10−5, Fig. 6c).

Discussion
Our results demonstrated that an MRI-based machine learning “clinical-radiomic” approach was an accurate 
method to predict, at an early stage, the treatment response of patient with LARC.

Importantly, the addition of novel radiomic features to standard T2w-based clinical features was indeed 
useful in the improvement of the prognostic model. Moreover, the prediction further improved when both TC 
and TB radiomic features were included. These results confirm the promising role of baseline T2w-imaging 
for the prediction of clinical-outcome21,22,51,52. Recent studies have demonstrated the prognostic role of tumor 
morphology and the adjacent perirectal tissue assessed on T2w-imaging10,53. Furthermore, the importance of the 
perirectal tissue status for the final clinical outcome was also underlined by the significant reduction of the local 
recurrences with the introduction of TME thanks to the complete excision of microtumors around the  cancer54. 
To the best of our knowledge our study, apart for the added value of radiomic features to standard MRI-based 
clinical metrics, is the first demonstrating the synergic role between feature extracted from the tumor core and 
the tumor border in the early prediction of response to therapy. Since the tumor border naturally include a certain 

Table 2.  Descriptive baseline characteristics of included patients (n = 72). *IQR Inter-Quartile Range; SD 
Standard Deviation; IAS Internal Anal Sphincter; EMVI Extramural Vascular Invasion; MR Major Pathological 
Response; nMR non-Major Pathological Response. **Assessed with MRI and derived from clinical MRI 
reports in the hospital’s patient database. ***Assessed according to Mandard Tumor Regression Grade (TRG) 
system on surgical specimen after neoadjuvant treatment in 69/72 patients. In three patients, a sustained 
complete clinical response (with repeated negative MRI examinations and endoscopy with or without biopsy) 
was considered surrogate for a complete response; the follow-up (mean ± SD) was 47 ± 11 months.

Variable Value

Gender

Male 48 (67%)

Female 24 (33%)

Mean age (IQR*) 65 (57.5–73.8)

MRI exam 72

Clinical MRI assessment

Mean cancer volume (Mean ± SD) 21,885 ± 20,539  mm2

Location

 High 7 (10%)

 Middle 33 (46%)

 Low 32 (44%)

Craniocaudal extension (Mean ± SD) 55 ± 22 mm

Distance from IAS (Mean ± SD) 31 ± 27 mm

Depth of extramural invasion (Mean ± SD) 7 ± 7 mm

Presence of mesorectal fascia infiltration 44 (61%)

Presence of EMVI 50 (69%)

Primary cT stage**

T1-T2 14 (19.4%)

T3 55 (76.4%)

T4 3 (4.2%)

Primary cN stage**

N0 2 (2.7%)

N1 22 (30.6%)

N2 48 (66.7%)

Treatment response***

MR 48 (67%)
34 TRG1 (71%)

14 TRG2 (29%)

nMR 24 (33%)
17 TRG3 (71%)

7 TRG4 (29%)
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degree of mesorectal compartment, our results confirm that also perirectal tissues contain useful information 
for the prediction of treatment response, as recently showed by Shaish et al.55.

Other studies based on radiomics were recently proposed in literature. However, different radiomics 
approaches were used: for example, a delta-radiomics approach was used to analyze the variation of quantita-
tive features over time. In this way, Jeon et al. analyzed the difference in radiomic features before and after CRT. 
The authors demonstrated that delta radiomics signatures were successful predictors of treatment response 
and independent prognostic  factors56. In other studies, the predictivity of more extensive MRI protocols was 
 explored57,58. For example, Cui et al. investigated the predictive role of a multiparametric MRI approach including 
T2w, contrast-enhanced T1w and ADC  images57. They demonstrated that a radiomics-based nomogram could 
predict pathological complete response in patients with LARC. In the same way, Liu et al. developed a radiom-
ics model based on T2w images and DWI before and after chemoradiotherapy resulting in 30 selected features 
showing good discrimination  performance59. Additionally, Wan et al., recently published a retrospective study 
including pre and post neoadjuvant MRI examination from which radiomics features were extracted. Their 
delta-radiomics signature based on T2w images and DWI showed an AUC of 0.91 for the pathologic complete 
response  prediction60. Furthermore, Liu et al. recently developed and validated a multiparametric MRI-based 
radiomics signature including T2w images and ADC for the prediction of distant metastasis in LARC 61.

Differently from these approaches, our study was focused only on the primary staging and included only 
T2w images. In fact, our primary aim was to investigate biomarkers of treatment response at an early stage using 
the most widely used and recommended MRI  imaging7. Focusing of the important features deemed as such by 
the machine learning algorithm, in our study the principal predictive features were mainly focused on tumor 
heterogeneity and clinical, visually assessed, characteristics. For example, tumors with high degree of internal 
heterogeneity, N+ and with a high clinical T staging were more likely associated to a poor treatment response. 
Furthermore, cancers located in low rectum were found to have a more favorable outcome thus confirming the 

Figure 4.  ROC analyses of the machine learning (PLS) classification performance predicting response to 
therapy (major pathological response as “positive”, non-major pathological response labelled as “negative”) when 
considering (a) standalone clinical features (b) standalone radiomic features and (c) combined clinical and 
radiomic features.
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crucial role of neoadjuvant chemo-radiation therapy in this category of  patients62. Since most of the predictive 
features were extracted by 1–2 mm resolution voxels instead of 5 mm, our results support the recommenda-
tions of the last European Society of Gastrointestinal and Abdominal Imaging (ESGAR) consensus  meeting7. In 
fact, according to these guidelines, the slice thickness of axial T2-weighted images should be equal or inferior 
to 3  mm7. Similarly to other studies, the accuracy of the prediction improved when a qualitative MRI assess-
ment is added to a quantitative radiomic-based  analysis21,51. In this way we are confident that the development 
of other “omics” disciplines may further improve the overall accuracy of the treatment response  prediction63,64.

Our study has some limitation. First of all, the sample size is limited and our study lacks of a validation 
cohort. However, the nCV implemented in our study minimized the effect of reduced number of samples and 
 overfitting42. Moreover, the limited sample size was largely due to the exclusion of all patients who underwent 
rectal MRI on a different magnet (1.5 T), patients who underwent a different radiation therapy than long-course, 
and patients without known final clinical outcome known. Indeed, future studies on larger cohorts are warranted 
to confirm our findings, and to further improve the classification outcome.

Secondly, ours is a retrospective single-center study. For this reason, further studies, possibly prospective and 
multicentric need to be warranted to define a potential standardization of our approach.

Third, some patients did not receive scopolamine butylbromide intravenously due to contraindications. In 
addition, our 3 T MR scanner is routinely scheduled for a software upgrade which might have improved the 
image quality over time. Nonetheless, these changes did not affect nor modify the main protocol parameters 
and reflect the daily clinical practice. Fourth, we only focused our prediction on T2-weighted imaging, without 
considering other MRI techniques, such as DWI and Dynamic Contrast Enhanced Imaging (DCE). However, 
since our objective was the prediction at the primary staging, the potential role of DWI and DCE at this time 
point is controversial. In fact, there is no clear added benefit for DWI regarding T, N, MRF and EMVI assessment 
based on current evidence. On the other hand, DCE-MRI should be considered as a research tool only and not 
yet ready to be adopted  routinely7.

Conclusion
A pre-treatment, MRI-based, “clinical-radiomic” machine-learning model accurately predict the treatment 
response in patients with locally advanced rectal cancer. The prediction improved when combining MRI-based 
clinical features and radiomic features, the latter extracted from both tumor core and the tumor border. Exploit-
ing the method, patients with locally advanced rectal cancer could benefit from a tailored approach including 
conservative strategies. Prospective validation studies in randomized clinical trials are warranted to better define 
the role of radiomics in the development of rectal cancer precision medicine.

Figure 5.  (a) Distributions of the PLS β-weights of radiomic and clinical features when the machine learning 
analysis was performed on combined data. (b) β-weights associated to the top 1% of features with the largest 
β-weights in magnitude, i.e. those most impacting the prediction.
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